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ABSTRACT 

 
 Numeric simulation in studies of electrodynamic processes in charged particle accelerators becomes 

more and more popular. The tendency towards increase in current of charged particles and total unit capacity 
has lead to qualitatively new requirements to numeric simulation of electrodynamic processes. One of the 
most significant requirements is multi-mode type of models, that is, possibility to investigate into interaction 
between charged particle beams and a set of electromagnetic oscillations, which are excited in operation 
spaces. In this work numeric model is based on electrodynamic simulation of slowing systems in the form of a 
chain of coupled cavity resonators, and electromagnetic fields of the system are described by expanding on 
major basis which is generated in complex shape resonator using numeric method. 
Keywords: numeric simulation, slowing system, linear accelerator, beam emittance, higher order modes, 
multi-mode models, cavity resonator, electromagnetic field, equipotential. 
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INTRODUCTION 
 

Current development of charged particle accelerators is characterized with increased requirements to 
parameters pf accelerated beam. This is stipulated by expansion of the scope of physical problems studied by 
means of charged particle beam. It this regard it would be reasonable to apply the notion of beams with 
precious parameters. Such characteristics as narrow energy spectrum, low values of longitudinal and 
transversal emittance, high values of short- and long-term stability of beam energy and current should be 
implemented at high energy and significant intensity of accelerated particles. 

 
In addition to conventional application of charged particle accelerators as a tool of experimental 

physics in recent years the fields of their application in national economy are expanded (Ryabukhin et al., 
1980). Certain requirements to such application accelerators  are specified: ease of maintenance, economic 
efficiency, reliability. 

 
In this regard numerical experiment gains high practical importance, which in some cases is 

significantly less expensive than natural experiment and does not require for high expenses. Moreover, as 
practically shown, numerical experiment makes it possible to reveal previously unknown processes and 
phenomena, to serve as a tool of sophisticated and comprehensive investigations into simulated subject 
(Roshal', 1979).  

 
Numerous methods are developed and applied in order to obtain accelerated beams with required 

properties (Gusarova et al., 2009). Among others they involve parametric stabilization of properties of 
accelerator systems, application of systems of beam generation at various accelerating stages from injection to 
its extraction onto target. Accelerating system plays significant role in obtaining of required beam properties. 
In accelerating sections clusters are generated and accelerated, their sizes and shape are varied. Investigation 
into electrodynamic parameters of accelerating sections enables development of methods of beam quality 
improvement and obtaining of its required characteristics.  

 
Obtaining of required beam characteristics to a considerable extent is determined by the influence of 

higher order modes, since during passing of charged particle beam in accelerating structure wide spectrum of 
waves is generated with various resonance frequencies. This effect impacts negatively on accelerator 
operation, since in this case a portion of beam energy is consumed by electromagnetic field, however, more 
significant is the interaction between induced waves with the beam (Bolgov et al., 2013). 

 
The induced fields of higher order modes  have transversal electric and magnetic components on the 

axis and, thus, deviate subsequent clusters. This can cause significant increase in transversal and longitudinal 
beam emittance and finally lead to expansion of energy spectrum of particles and even to loss of particles on 
the walls, and in the case of increase in beam current to its complete loss.  

 
Damping of higher order modes plays an important role in achievement and retention  of low 

emittance and low modulation of beam energy in accelerators, especially in accelerators on the basis of 
superconducting technology. 

 
Nowadays, as a consequence of on-going projects aimed at development of high-current electron and 

ion accelerators the application of methods of computer aided electrodynamics becomes more widely applied 
at the stages of estimations and preliminary analysis of the processes in accelerating structures. Increase in 
beam current and total capacity of accelerators lead to qualitatively new requirements specified for simulation 
of the processes. 

 
One of such requirements is multi-mode type of models, that is, possibility to investigate into 

interaction between charged particle beams and a set of electromagnetic oscillations, which are excited during 
beam passing across the considered subjects or during transmission of electromagnetic энергии from 
generator to beam. 

 
The most complete generation of such model can be achieved by means of  electrodynamic approach, 

when the problem is solved numerically either directly with the Maxwell equations (Roshal', 1979), or with 
equations acquired from the Maxwell equations by approximations and restrictions (Slater, 1948). 



  ISSN: 0975-8585 

March – April  2016  RJPBCS   7(2)  Page No. 899 

One of the problems of computer aided electrodynamics upon generation of multi-mode model is 
determination of electrodynamic properties of oscillations, which can be excited in the spaces where filed 
interacts with flows of charged particles. 

 
This work proposes a method of calculations of electromagnetic fields and resonance frequencies of 

higher order modes  in complex-shape resonators and other important parameters of accelerating structure. 
 

EXPERMIMENTAL 
 

Calculation of resonance frequencies and electromagnetic fields of higher order modes oscillations higher 

order modes. 

 
Let us consider a resonator, which represents certain space restricted with planes of symmetry, if any, 

and ideally conducting surface of complex shape, such that it is not a coordinate plane in known coordinate 
systems, which facilitate solution of wave equation by partition method. 

 
It is required to determine electrodynamic properties, such as eigen frequency, Q-factor, distribution 

of electric and magnetic fields of such oscillations, which can be excited in this resonator. 
 
In order to solve the set problem let us generate Для решения поставленной задачи построим в 

исследуемом объёме curvilinear orthogonal coordinate system in the considered space, such that the 
restricted surface becomes the coordinate plane. For vacuum space without extraneous currents the Maxwell 
equations can be written as follows: 

 

𝑟𝑜𝑡𝑬 = −𝜇0
𝜕𝑯

𝜕𝑡
, 𝑟𝑜𝑡𝑯 = 𝜀0

𝜕𝑬

𝜕𝑡
, 𝑑𝑖𝑣𝑬 = 0, 𝑑𝑖𝑣𝑯 = 0      (1) 

 
Assuming that the fields depend harmonically on time, which is not a restriction upon identification of 

this problem, we obtain as follows : 
 

𝑟𝑜𝑡𝑬 = 𝑗𝜔𝜇0𝑯, 𝑟𝑜𝑡𝑯 = 𝑗𝜔𝜀0𝑬.      (2) 
 
Let us consider the obtained equations in curvilinear orthogonal ой orthogonal ой coordinate system 

(𝑢1, 𝑢2, 𝑢3). In covariant components:  
 

𝑬 = 𝒂𝟏𝑒1 + 𝒂
𝟐𝑒2 + 𝒂

𝟑𝑒3, 𝑯 = 𝒂𝟏ℎ1 + 𝒂
𝟐ℎ2 + 𝒂

𝟑ℎ3, (3) 
 

where 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are the relative unit vectors. 
 

Introducing covariant representations of field vectors (3) into Eq. (2) we obtain as follows: 
 
 

{
 
 

 
 1 √𝑔 [𝒂𝟏 (

𝜕𝑒3
𝜕𝑢2

−
𝜕𝑒2
𝜕𝑢3

) + 𝒂𝟐 (
𝜕𝑒1
𝜕𝑢3

−
𝜕𝑒3
𝜕𝑢1

) + 𝒂𝟑 (
𝜕𝑒2
𝜕𝑢1

−
𝜕𝑒1
𝜕𝑢2

)] = −𝑗𝜔𝜇0(𝒂
𝟏ℎ1 + 𝒂

𝟐ℎ2 + 𝒂
𝟑ℎ3),⁄

                                                                                                                                                                                                    (4)

1 √𝑔 [𝒂𝟏 (
𝜕ℎ3
𝜕𝑢2

−
𝜕ℎ2
𝜕𝑢3

) + 𝒂𝟐 (
𝜕ℎ1
𝜕𝑢3

−
𝜕ℎ3
𝜕𝑢1

) + 𝒂𝟑 (
𝜕ℎ2
𝜕𝑢1

−
𝜕ℎ1
𝜕𝑢2

)] = 𝑗𝜔𝜀0(𝒂
𝟏𝑒1 + 𝒂

𝟐𝑒2 + 𝒂
𝟑𝑒3)⁄ ,

 

 
 

where 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 are the respective coordinate unit vectors; 𝑔 = 𝑔11𝑔22 𝑔33 is the basic determinant of 
orthogonal coordinate system. 
 

Multiplying both members of Eq. (4) by 𝒂𝟏 and applying the ratios of curvilinear orthogonal 
coordinate we obtain for the first equation: 
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{
 
 

 
 

𝜕𝑒3
𝜕𝑢2

−
𝜕𝑒2
𝜕𝑢3

= 𝑗𝜔𝜀0𝑔1ℎ1,

𝜕𝑒1
𝜕𝑢3

−
𝜕𝑒3
𝜕𝑢1

= 𝑗𝜔𝜀0𝑔2ℎ2,          (5)

𝜕𝑒2
𝜕𝑢1

−
𝜕𝑒1
𝜕𝑢2

= 𝑗𝜔𝜀0𝑔3ℎ3,

 

 

where: 𝑔 = √
𝑔22𝑔33

𝑔11
 , 𝑔 = √

𝑔11𝑔33

𝑔22
 , 𝑔 = √

𝑔22𝑔11

𝑔33
 . 

 
 

Similarly, for the second equation:  
 
 

{
 
 

 
 

 

𝜕ℎ3
𝜕𝑢2

−
𝜕ℎ2
𝜕𝑢3

= −𝑗𝜔𝜇0𝑔1𝑒1,

𝜕ℎ1
𝜕𝑢3

−
𝜕ℎ3
𝜕𝑢1

= −𝑗𝜔𝜇0𝑔2𝑒2, (6)

𝜕ℎ2
𝜕𝑢1

−
𝜕ℎ1
𝜕𝑢2

= −𝑗𝜔𝜇0𝑔3𝑒3,

 

 
 

Using Eqs. (5) and (6), it is possible to write a set of three differential equations of the second order 
with regard to the components of electric and magnetic fields. As an example, let us consider generation of 
such set of equations for spaces with axial symmetry. It can be easily seen that axial symmetry of the space 
lead to harmonic dependence of field components on azimuth. If the curvilinear orthogonal coordinate system 
generated in the considered space also has axial symmetry and the coordinate 𝑢2 is similar to azimuth 
coordinate in cylindrical coordinate system, then the following equations are valid: 

 

{ 

ℎ1 = ℎ1(𝑢
1, 𝑢3) ∙ 𝑓(𝑚𝑢2), 𝑒1 = 𝑒1(𝑢

1, 𝑢3) ∙ 𝑓ʹ(𝑚𝑢2),

ℎ2 = ℎ2(𝑢
1, 𝑢3) ∙ 𝑓ʹ(𝑚𝑢2), 𝑒2 = 𝑒2(𝑢

1, 𝑢3) ∙ 𝑓(𝑚𝑢2), (7)

ℎ3 = ℎ3(𝑢
1, 𝑢3) ∙ 𝑓(𝑚𝑢2), 𝑒3 = 𝑒3(𝑢

1, 𝑢3) ∙ 𝑓ʹ(𝑚𝑢2).

 

 
In Eq. (7): 𝑚 = 1, 2, 3 is the number of field variations in azimuth; 𝑓(𝑚𝑢2) = sin(𝑚𝑢2) or 𝑓(𝑚𝑢2) =

cos(𝑚𝑢2). 
 
Applying simple transformations, using Eqs. (5), (6) and with consideration for Eq. (7) it is possible to 

obtain equations with regard to three components of magnetic field, where 𝑘 is the wave number: 
 
 

{
 
 
 
 
 

 
 
 
 
 

𝑚2

𝑔3
ℎ1 −

1

𝑔2

𝜕2ℎ1
(𝜕𝑢3)2

−
𝜕ℎ1
𝜕𝑢3

𝜕

𝜕𝑢3
(
1

𝑔2
) − 𝑘2𝑔1ℎ1 −

𝑚

𝑔3

𝜕ℎ2
𝜕𝑢1

+
1

𝑔2

𝜕2ℎ3
𝜕𝑢2𝜕𝑢3

+
𝜕ℎ3
𝜕𝑢1

𝜕

𝜕𝑢3
(
1

𝑔2
) = 0,

𝑚

𝑔3

𝜕ℎ1
𝜕𝑢1

+𝑚ℎ1
𝜕

𝜕𝑢1
(
1

𝑔3
) −

1

𝑔1

𝜕2ℎ2
(𝜕𝑢3)2

−
𝜕ℎ2
𝜕𝑢3

(
1

𝑔1
) −

1

𝑔3

𝜕2ℎ2
(𝜕𝑢1)2

−
𝜕ℎ2
𝜕𝑢1

𝜕

𝜕𝑢1
(
1

𝑔3
) − 𝑘2𝑔2ℎ2 +

 + 
𝑚

𝑔1

𝜕ℎ3
𝜕𝑢3

 + 𝑚ℎ3
𝜕

𝜕𝑢3
(
1

𝑔1
) = 0,                                                                                                                                  (8)

1

𝑔2

𝜕2ℎ1
𝜕𝑢1𝜕𝑢3

+
𝜕ℎ1
𝜕𝑢3

𝜕

𝜕𝑢1
(
1

𝑔2
) −

𝑚

𝑔1

𝜕ℎ2
𝜕𝑢3

−
1

𝑔2

𝜕2ℎ3
(𝜕𝑢1)2

−
𝜕ℎ3
𝜕𝑢1

𝜕

𝜕𝑢1
(
1

𝑔2
) +

𝑚

𝑔1
ℎ3 − 𝑘

2𝑔3ℎ3 = 0.

 

 
Substituting differential operators for difference analogs according to the five-point approximation 

scheme (it is optimum for this problem), it is possible to obtain a set of linear algebraic equations with regard 
to unknown components of magnetic field in the nodes of curvilinear orthogonal grid. 

 
It should be mentioned that setting of boundary conditions of any type is not very complicated, since 

the resonator boundary is coordinate and the vector components are either normal or tangential with regard 
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to restricting surface. The matrix of such obtained set of linear algebraic equations is in general case 15-
diagonal, though upon transition from differential operator to difference analog, as can be easily 
demonstrated, the maximum number of unknown variables in each equation of the set (8) upon five-point 
approximation decreases to eleven. 

 
The obtained set of linear algebraic equations is homogeneous, hence, non-trivial solution will exist 

only at such wave numbers when the determinant is zero. Therefore, the problem of determination of 
resonance frequencies  of oscillations can be reduced to determination of determinant zeroes. It should be 
mentioned that the determinant dependence on frequency for this set of algebraic equations is alternating 
differentiable function with continuous derivatives up to the N

th
 order (N is the number of grid nodes), which 

facilitates development of algorithm of zero det4ermination without operator interference. 
 
In order to calculate determinant of the obtained set of equations it is possible to apply the method of 

Gaussian elimination, with its adjustment for certain form of the matrix of the set coefficients, which leads to 
significant reduction of calculations. 

 
Interrelation between geometrical sizes of slowing structure of accelerator with electrodynamic characteristics. 

 
Let us obtain expression interrelating geometrical sizes of biperiodic slowing structure (BSS) and 

values of accelerated currents with its electrodynamic characteristics. With this aim let us consider an arbitrary 
resonator representing certain space V, restricted with closed surface S. This surface is the metallic shell of 
resonator with cut holes for interaction with other resonators or inlet waveguide. We consider the 
determination of electromagnetic fields excited in resonator at preset frequency 𝜔. 

 
Since the internal resonator surface can be sufficiently complex, then an accurate solution of the 

Maxwell equations for the considered space is impossible. In this regard let us represent the required solution 
in the form of sum of normal oscillations, which are orthogonal. 

 
It was demonstrated theoretically and experimentally (Knapp et al., 1968), that BSS sensitivity to 

current loading and other types of detuning is the lower the higher is the distance of working type of 
oscillations to adjacent types of oscillations, and that dispersion curve in general case is split into two branches 
subdivided by stop band (Wasow and Forsythe, 1963). Existence of stop band leads to distribution 
heterogeneity of electric field in accelerating cells and decrease in effective shunt resistance due occurrence of 
electric field in connection cells. Thus, for determination of BSS sensitivity to perturbation factors it is required 
to know dispersion dependence. 

 
It is known (Slater, 1948) that any solution of the Maxwell equations for resonator contains in general 

case solenoidal (vortex) and potential (gradient) components. Let us be restricted only by solenoidal 
component which is usually considered as "radiation field".  

 
Let us select a certain system of solenoidal functions (𝑬𝑚, 𝑯𝑚), (where m = 1,2…), according to which 

the required fields 𝑬 and 𝑯   are expanded in resonator. The selected set of functions satisfies wave equation 
with homogeneous boundary conditions. Thus, the set of solenoidal functions (𝑬𝑚 , 𝑯𝑚) is a solution of the 
Maxwell equations in resonator, the surface of which is ideal conductor. Hence, it is possible to state that 
under these assumptions the selected set generates complete orthonormalized set of functions (Mashkovtsev 
et al., 1966) 

 

∫𝑬𝑘𝑬𝑚  𝑑𝑉
 

𝑉

= ∫𝑯𝑘𝑯𝑚 𝑑𝑉 = 𝛿𝑘𝑚

 

𝑉

= {
0, 𝑘 ≠ 𝑚
1, 𝑘 = 𝑚

 .      (9) 

 
In this case it is possible to obtain the following set of equations for required electric field of the 

considered resonator: 
𝑑2

𝑑𝑡2
∫ 𝑬𝑬𝑚 𝑑𝑉

 

𝑉
+ 𝜔𝑚

2 ∫ 𝑬𝑬𝑚 𝑑𝑉
 

𝑉
=

−
𝜔𝑚

√𝜀𝜇
∫ [𝒏𝑬]

 

𝑆
𝑯𝑚𝑑𝑆 −

1

𝜀

𝑑

𝑑𝑡
∫ 𝑱 𝑬𝑚𝑑𝑉

 

𝑉
−

𝜔𝑚

√𝜀𝜇
∫ [𝒏𝑬]

 

𝑆ℎ𝑐
𝑯𝑚𝑑𝑆 .      (10)  
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Here 𝑬𝑚, 𝑯𝑚, 𝜔𝑚 are the eigen functions and eigen frequencies of the resonator; J is the vector of 
current density in arbitrary point of resonator space; 𝑡 is the time; 𝑆ℎ𝑐  is the cumulative surface area of 
connection holes of the resonator; 𝜀, 𝜇  are the absolute dielectric and magnetic permeability. 

 
Similar equation can be obtained for magnetic field. The obtained Eq. (10) can be generalized for the 

case of a chain of coupled  resonators generating BSS, herewith, the respective variables will be denoted with 
the index n (resonator number): 

𝑑2

𝑑𝑡2
∫ 𝑬𝑛𝑬𝑛𝑚𝑑𝑉
 

𝑉𝑛

+ 𝜔𝑛𝑚
2 ∫𝑬𝑛𝑬𝑛𝑚𝑑𝑉

 

𝑉

= −
𝜔𝑛𝑚

√𝜀𝜇
∫ [𝒏𝑬𝑛]
 

𝑆

𝑯𝑛𝑚𝑑𝑆 −
1

𝜀

𝑑

𝑑𝑡
∫𝑱𝑛 𝑬𝑛𝑚 𝑑𝑉
 

𝑉

−
𝜔𝑛𝑚

√𝜀𝜇
∫ [𝒏𝑬𝑛]
 

𝑆ℎ𝑐

𝑯𝑛𝑚𝑑𝑆 . (11) 

 
The order of the set is determined as the product of number of resonators in the chain by the number 

of the taken functions of the set (𝑬𝑚 , 𝑯𝑚) in expansion of the fields 𝑬 and 𝑯. 
 
The Eq. (11) is the required set for the chain of coupled resonators. Solution of this set makes it 

possible to determine general electrodynamic characteristics of slowing structure generated by the chain of 
coupled resonators. They are as follows: dispersion, distribution of fields across the structure, as well as 
external parameters (inlet resistance,  reflection coefficient and others). 

 
Let us assume that the slowing structure is not connected with inlet waveguide and does not contain 

accelerated particles. In this case the second term in the right side of Eq. (11), reflecting interaction of 
accelerated particle beam with the resonator field, is zero, and 𝑆ℎ𝑐  is only the surface of resonator connection 
holes between themselves. Then, the required fields in n-resonator of slowing structure can be presented as 
follows: 

𝑬𝑛(𝑟, 𝑡) = 𝐼𝑚[𝑬𝑛(𝒓)𝑒
−𝑖𝜔𝑡] = ∑ 𝐼𝑚

∞

𝑚=1

[𝑉𝑛𝑚𝑬𝑛𝑚(𝒓)𝑒
−𝑖𝜔𝑡], (12) 

𝑯𝑛(𝑟, 𝑡) = 𝐼𝑚[𝑯𝑛(𝒓)𝑒
−𝑖𝜔𝑡] = ∑ 𝐼𝑚

∞

𝑚=1

[𝐼𝑛𝑚𝑯𝑛𝑚(𝒓)𝑒
−𝑖𝜔𝑡], (13) 

 
where: 𝑉𝑛𝑚, 𝐼𝑛𝑚  are the unknown amplitude expansion coefficients of the fields 𝑬 and 𝑯, 𝒓 is the radius vector 
of the considered point in n-resonator. 
 

Then, with consideration for Eqs. (9), (12) and (13) the left side of Eq. (11) can be transformed as 
follows: 

𝑑2

𝑑𝑡2
∫ 𝑬𝑛𝑬𝑛𝑚 𝑑𝑉

 

𝑉𝑛
+ 𝜔𝑛𝑚

2 ∫ 𝑬𝑛𝑬𝑛𝑚 𝑑𝑉
 

𝑉
=Im[(𝜔𝑛𝑚

2 − 𝜔2)(𝑉𝑛𝑚𝑒
−𝑖𝜔𝑡].      (14) 

 
The first term in the right side of Eq. (11) reflects loss in the resonator walls and can be expressed by 

means of the value of its own Q-factor 𝑄𝑛𝑚: 
 

𝜔𝑛𝑚

√𝜀𝜇
∫ [𝑬𝒏(𝒓)𝑯𝑛𝑚]
 

𝑆𝑛

𝒏𝑑𝑆 = 𝜔2(𝑖 − 1)
1

𝑄𝑛𝑚
𝑉𝑛𝑚  .      (15) 

 
The integrals over the surface of connection holes 𝑆ℎ𝑐  in Eq. (11) reflect excitation of n-resonator by 

electromagnetic fields in connection holes with adjacent resonators or with inlet waveguides трактом, if it is 
connected to n-cell. In the considered case the electric connection between resonators can be neglected and  
the surfaces of connection holes can be presented in integral form as follows: 

 

∫ [𝒏𝑬𝑛]
 

𝑆ℎ𝑐

𝑯𝑛𝑚𝑑𝑆 =  ∫ [𝑬𝑡𝑔𝑛𝑯𝑛𝑚]
 

𝑆𝑛

𝒏𝑑𝑆 .      (16) 

 
Substituting the obtained Eqs. (14), (15) and (16) into Eq. (11) we obtain a set of equations with rgard 

to unknown coefficients 𝑉𝑛𝑚  
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(𝜔𝑛𝑚
2 − 𝜔2)𝑉𝑛𝑚 = 𝜔2(1 − 𝑖)

1

𝑄𝑛𝑚
𝑉𝑛𝑚 −

𝜔𝑛𝑚

√𝜀𝜇
∫ [𝑬𝑡𝑔𝑛𝑯𝑛𝑚]

 

𝑆𝑛
𝒏𝑑𝑆 .      (17)  

 
The values to be instantiated and defined in Eq. (17) include tangential component of electric field on 

connection hole 𝑬𝑡𝑔𝑛. The considered BSS contain axial symmetric resonators, in each of them narrow 

connection gaps are cut in side walls in direction of azimuth coordinate. 
 
Since the gap width is by far lower than the wave length, then it makes possible to represent the gap 

by transmitting line without loss, short-circuited at the ends. Along this line a wave of 𝑇 type is propagated, 
herewith, at the left and right planes of the gap only tangential component of electric field exists. Such 
assumption is in direct logical compliance with neglecting of potential portion of the field. 

 
The distributed capacitance of the gap is determined by solution of electrostatic problem in the plane 

perpendicular to the direction of propagation of 𝑇 wave. 
 
 

RESULTS 
 

The proposed procedure provides visualization of preset frequency band with highlighting of existing 
resonances. The visualization can be accelerated by decrease in the number of grid nodes, thus increasing 
relative error of calculations. In order to find the determinant zero on frequency axis it is required to specify it 
by increase in the applied grid nodes. 

 
Aiming at determination of efficiency of the proposed method of calculation of electrodynamic 

properties of oscillation types, it was applied as the basis for test software for calculation of higher order 
modes  in cylindrical resonator. Relative error of calculation of resonance frequencies  did not exceed 
0.5 ∙ 10−4. Conversion to complex-shape resonators increases total operation time of the software. 

 
Therefore, in the case of curvilinear orthogonal coordinates in the considered space an efficient 

method was obtained for determination of electrodynamic properties of higher order modes. Such coordinate 
system can be generated using the following algorithm. Rectangular grid is applied onto longitudinal cross 
section of axially symmetric space, and it is used for solution of the Laplace equation by finite difference 
method, provided that one portion of cross section contour is one electrode and the other portion is another 
electrode. 

 
Nearly in all cases such conventional splitting of the contour is possible. The obtained potential 

distribution is used for determination of equipotentials (resonator boundaries are also equipotentials). Then, 
using properties of electrostatic field and geometrical methods, it is possible to generate the system of field 
lines perpendicular to equipotentials. Their crossing  points are the nodes of curvilinear orthogonal coordinate 
system. With known positions of the nodes in reference coordinate system, for instance, cylindrical one, it is 
possible to calculate elements of fundamental tensor of new coordinate system. 

 
It should be mentioned that the generated curvilinear grid has clusters in vicinity of internal 

protrusions of resonator boundary, that is, in the regions with high gradients of electromagnetic field, and this 
cluster is a natural consequence of solution of the Laplace equations. 

 
The considered method of determination of electrodynamic properties of higher order modes, as can 

be readily demonstrated, can be applied for spaces without axial symmetry. In such case it is necessary to 
generate 3D orthogonal coordinate system, which is possible in principle, though involves some difficulties 
upon programming.  

 
DISCUSSION 

 
The selected model, of course, does not cover variety of practical slowing systems but is restricted 

with the structures in the form of a chain of coupled cavity resonators. Selection of such model is stipulated by 
possibility to carry out comprehensive numerical study of slowing systems upon relative simplicity of the 
obtained algorithms. 
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Together with the model of electrodynamic coupled cavity resonator chain another model is used in 

practice, which represents slowing structure in the form of a chain of coupled radio engineering circuits 
(Grigor`ev and Yankevich, 1975; Kalyuzhnyi et al., 2013; Novozhilov et al., 2014). Such representation of 
slowing systems, while providing high visualization and simplicity of algorithm, is characterized with certain 
disadvantages (Segerlind, 1979; Marchuk and Agoshkov, 1981), which restrict application of the circuit model 
(for instance, difficulty of accounting for non-symmetry of cell excitation, necessity to determine parameters 
of cell equivalent circuit and so on).  

 
As mentioned above, while simulating slowing systems in the form of a chain of coupled resonators 

the electromagnetic fields in resonators are expanded into series in systems of eigen vector orthonormalized 
functions, thus providing multi-mode model. Such approach makes it possible to subdivide the problem 
solution into two stages: solution of boundary electrodynamics problem in order to determine eigen vector 
functions and determination of unknown expansion coefficients of electromagnetic field. However, most of 
the applied in practice slowing systems have complex-shape resonators, which complicates obtaining of 
analytical solution of boundary problem, and determination of eigen vector functions of such resonators 
requires for application of numerical methods. 

 
CONCLUSIONS 

 
Most numerical solutions of wave equation are based on its reduction to a set of linear algebraic 

equations by means of  discretization (Vol'man abd Pampu, 1975). Generally four main solutions of boundary 
equation in cavity resonators are applied: finite difference method, variation method, integral method, and 
finite elements method, widely applied nowadays (Daikovskii et al., 1980). Since discretization can be 
considered as projection of infinite functional space, then all aforementioned methods are variants of 
projection-grid method (Karliner et al., 1979). Problems of improvement of accelerator tools, intention to 
apply more and more complex processes in accelerating systems inevitably lead to necessity of thorough 
theoretical investigation into all elements of designed electrodynamic systems. Numerical simulation becomes 
more and more powerful and multi-purpose tool of such theoretical investigations, which sometimes is 
significantly less expensive than natural experiment, it does not require for high expenses, makes it possible to 
acquire required statistics in short times and in combination with natural experiment promotes significantly 
development of new facilities and tools. 

 
The tendency towards increase in currents of charged particles and total unit capacity has lead to 

qualitatively new requirements to numeric simulation of electrodynamic processes. One of the most significant 
requirements is multi-mode type of models, that is, possibility to investigate into interaction between charged 
particle beams and a set of electromagnetic oscillations, which are excited in operation spaces, and to study 
dispersion properties of structures in  higher order bandwidths. 

 
The most promising in this regard is the electrodynamic model which enables obtaining of sufficiently 

complete pattern of electrodynamic processes in accelerating systems. The electrodynamic model is based on 
expanding of required electromagnetic fields in eigen vector functions of resonators (Grigor'ev and Yankevich, 
1984). In this case the whole problem is split into two relatively autonomous problems: generation of systems 
of eigen vector functions of resonators and determination of unknown coefficients of the expansion. 

 
We aim at further investigations into selection of optimum accelerating structures of upon 

modernization of existing facilities and development of innovative charged particle accelerators with 
minimization of influence of higher order waves on properties of celebrated beams of charged particles. This 
problem is urgent for such accelerators as powerful sources of synchrotron radiation based on linear 
accelerators of electrons with high average capacity of accelerated beam for the purposes of industry, 
medicine, and environmental protection. 
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